Increased neuronal firing in computer simulations of sodium channel mutations that cause generalized epilepsy with febrile seizures plus.

نویسندگان

  • Jay Spampanato
  • Ildiko Aradi
  • Ivan Soltesz
  • Alan L Goldin
چکیده

Generalized epilepsy with febrile seizures plus (GEFS+) is an autosomal dominant familial syndrome with a complex seizure phenotype. It is caused by mutations in one of 3 voltage-gated sodium channel subunit genes (SCN1B, SCN1A, and SCN2A) and the GABA(A) receptor gamma2 subunit gene (GBRG2). The biophysical characterization of 3 mutations (T875M, W1204R, and R1648H) in SCN1A, the gene encoding the CNS voltage-gated sodium channel alpha subunit Na(v)1.1, demonstrated a variety of functional effects. The T875M mutation enhanced slow inactivation, the W1204R mutation shifted the voltage dependency of activation and inactivation in the negative direction, and the R1648H mutation accelerated recovery from inactivation. To determine how these changes affect neuronal firing, we used the NEURON simulation software to design a computational model based on the experimentally determined properties of each GEFS+ mutant sodium channel and a delayed rectifier potassium channel. The model predicted that W1204R decreased the threshold, T875M increased the threshold, and R1648H did not affect the threshold for firing a single action potential. Despite the different effects on the threshold for firing a single action potential, all of the mutations resulted in an increased propensity to fire repetitive action potentials. In addition, each mutation was capable of driving repetitive firing in a mixed population of mutant and wild-type channels, consistent with the dominant nature of these mutations. These results suggest a common physiological mechanism for epileptogenesis resulting from sodium channel mutations that cause GEFS+.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An epilepsy mutation in the sodium channel SCN1A that decreases channel excitability.

Mutations in three voltage-gated sodium channel genes, SCN1A, SCN2A, and SCN1B, and two GABAA receptor subunit genes, GABRG2 and GABRD, have been identified in families with generalized epilepsy with febrile seizures plus (GEFS+). A novel mutation, R859C, in the Nav1.1 sodium channel was identified in a four-generation, 33-member Caucasian family with a clinical presentation consistent with GEF...

متن کامل

Functional effects of two voltage-gated sodium channel mutations that cause generalized epilepsy with febrile seizures plus type 2.

Two mutations that cause generalized epilepsy with febrile seizures plus (GEFS+) have been identified previously in the SCN1A gene encoding the alpha subunit of the Na(v)1.1 voltage-gated sodium channel (Escayg et al., 2000). Both mutations change conserved residues in putative voltage-sensing S4 segments, T875M in domain II and R1648H in domain IV. Each mutation was cloned into the orthologous...

متن کامل

Enhanced inactivation and acceleration of activation of the sodium channel associated with epilepsy in man.

Generalized epilepsy with febrile seizures-plus (GEFS+) is a benign Mendelian syndrome characterized by childhood-onset febrile and afebrile seizures. Three point mutations within two voltage-gated sodium channel genes have been identified so far: in GEFS+ type 1 a mutation in the beta1-subunit gene SCN1B, and in GEFS+ type 2 two mutations within the neuronal alpha-subunit gene SCN1A. Functiona...

متن کامل

A BAC transgenic mouse model reveals neuron subtype-specific effects of a Generalized Epilepsy with Febrile Seizures Plus (GEFS+) mutation.

Mutations in the voltage-gated sodium channel SCN1A are responsible for a number of seizure disorders including Generalized Epilepsy with Febrile Seizures Plus (GEFS+) and Severe Myoclonic Epilepsy of Infancy (SMEI). To determine the effects of SCN1A mutations on channel function in vivo, we generated a bacterial artificial chromosome (BAC) transgenic mouse model that expresses the human SCN1A ...

متن کامل

Impaired inactivation gate stabilization predicts increased persistent current for an epilepsy-associated SCN1A mutation.

Mutations in SCN1A (encoding the neuronal voltage-gated sodium channel alpha1 subunit, Na(V)1.1, or SCN1A) are associated with genetic epilepsy syndromes including generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy. Here, we present the formulation and use of a computational model for SCN1A to elucidate molecular mechanisms underlying the increased ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 91 5  شماره 

صفحات  -

تاریخ انتشار 2004